Product and Commutativity of kth-Order Slant Toeplitz Operators

نویسندگان

  • Chaomei Liu
  • Yufeng Lu
  • Miroslaw Lachowicz
چکیده

and Applied Analysis 3 Theorem3. Letφ, ψ∈H∞(T) orφ,ψ ∈ H(T), the following statements are equivalent: (1.1) U φ and U ψ commute; (1.2) U φ and U ψ essentially commute; (1.3) φ(zk)ψ(z) = φ(z)ψ(z); (1.4) there exist scalars α andβ, not both zero, such that αφ+ βψ = 0. Nowwe start to study the commutativity of two kth-order slant Toeplitz operators with harmonic symbols. Proposition4. Letφ(z)=∑n p=−n a p z p andψ(z)= ∑n p=−n b p z , where a2 −n +b 2 −n ̸ = 0 and n is a positive integer, then the following statements are equivalent: (1.1) φ(zk)ψ(z) = φ(z)ψ(z); (1.2) there exist scalars α andβ, not both zero, such that αφ+ βψ = 0. Proof. We begin with the easy direction. First, suppose that (1.2) holds and let α ̸ = 0 without lost of generality, so that φ = −(β/α)ψ. Thus, φ(zk)ψ(z) = φ(z)ψ(z). To prove the other direction of the proposition, suppose that (1.1) holds. Since φ(z) = ∑n p=−n a p z p and ψ(z) =

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

kTH-ORDER SLANT TOEPLITZ OPERATORS ON THE FOCK SPACE

The notion of slant Toeplitz operators Bφ and kth-order slant Toeplitz operators B φ on the Fock space is introduced and some of its properties are investigated. The Berezin transform of slant Toeplitz operator Bφ is also obtained. In addition, the commutativity of kth-order slant Toeplitz operators with co-analytic and harmonic symbols is discussed.

متن کامل

Essentially Slant Toeplitz Operators

The notion of an essentially slant Toeplitz operator on the space L is introduced and some of the properties of the set ESTO(L), the set of all essentially slant Toeplitz operators on L, are investigated. In particular the conditions under which the product of two operators in ESTO(L) is in ESTO(L) are discussed. The notion is generalized to kth-order essentially slant Toeplitz operators. The n...

متن کامل

Weighted slant Toep-Hank Operators

A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighte...

متن کامل

On kth-Order Slant Weighted Toeplitz Operator

Let β = [formula: see text] be a sequence of positive numbers with β0 = 1, 0 < β(n)/β(n+1) ≤ 1 when n ≥ 0 and 0 < β(n)/β(n-1) ≤ 1 when n ≤ 0. A kth-order slant weighted Toeplitz operator on L(2)(β) is given by U(φ) = W(k)M(φ), where M(φ) is the multiplication on L(2)(β) and W(k) is an operator on L(2)(β) given by W(k)e(nk)(z) = (β(n)/β(nk))e(n)(z), [formula: see text] being the orthonormal basi...

متن کامل

Generalised Slant Weighted Toeplitz Operator

A slant weighted Toeplitz operator Aφ is an operator on L(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties. Keywords—Slant weighted Toeplitz operator, weighted multiplica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014